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. Abstract [/b :i‘ 1_<§ \

To solve the system of linear eqnatiogs Aw = r that arises from the
discretization of a two—dimensional self—;&joint elliptic differential
equation, iterative methods employing easily computed incomplete
factorizations, LU = ?+B. are frequently used. Dupont, Kendsll, and
Rachford [5]) showed tint, for the DKR factorization, the number of
iterations [trith-etic operations] required to/rednce the A-norm of the

1/ .1

error by a factor of e is O(h 1/21 og=) {O0(h 22103113. where h is the

present me error estimates which

stepsize used in the discretization.

suggest that, if a pair of Alternating-Dixection DKR Factorizations are

etic oﬁerltions} may be

used, then the number of iteraéionﬂ_*lrit
-1/3, 71 23
log ) {ocn 3103—)}

umerical rcsults supporting this

decreased to O(h

estimate are inbluded.
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1. Intzoduction,

Iterative methods are frequently used to solve the system of limear

equations
Aw = ¢ (1.1)

that arises from the usual five-point discretization of the Dirichlet

problem for the two-dimensional self-adjoint elliptic differential equation

where, throughout this paper, we assume

1. 8 is an open bounded region in R?,
2. 10 8, aro Lipschitz continuwous in a,
3. 8, 8, 21> 0 in @ for some constant 3, and

4. q £ 0 is bounded in O.
The efficiency of many iterative methods depends vpon the selection of an
easily-inverted approximation A to A. Several
authors [2, 4, 5, 7, 9, 10, 11, 12, 13] have suggested taking X to be an

incomplete factorization of A,
K = LU = A+B, (1.3)
where B is chosen so that L and U are sparse.

For several of these factorizations, there are two directiomally

dependent forms of B: B, and B,. Stone [13] found that, for his method,
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expoerimental results indicated that using the pair of imcomplete

factorizations alternately,

(A+B,)w

A (A+Bl)vn - u(Avn - r) (1.4)

oim

(A+Bz)vn+1 = (A+B.2)vn - 0(Avn+l -r),

2

vl

gave a faster rate of convergence than using either A= A+B1 or A = A&B’

alone in the statiomary iteratiom

Aw

atl = Zvn - U(Avn - r). (1.5)

Of course, eliminating v 1, we can rewrite the pair of equations (1.4) in
2

the form (1.5) using
~ -1
A= l. = [A+31][(2-0)A+Bl+82] [A+32] (1.6)

4 provided that [(2—3)A+Bl+82] is nonsin;nlnr.l We refer to the right side of
(1.6) as an Alternating-Direction Incomplete Factorization. Although l.
itself may be costly to compute, it is relatively inexpensive to solve

I.x = b, and it is the solution of such systems that is required in the

1 Note that the formal inverse of l“. [A+n’]'1[(z-)A+Bl+n,l[A+3121'1. is
always well-defined.
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iteration (1.5) and its Chebyshev or conjugate gradient acceletations.z

In general, l. is nonsymmetric. Since, in many applicatiomns, it is

advantageous for A to be symmetric, we also consider

-1 1.1 .-t
S " = 5[“0 +lo 1, (1.7)

the symmetric part of l;l. Again, although Sw itself may be costly to

compute, it is relatively inexpenmsive to solve Sux =b.

For the DKR factorization (an incomplete factorization similar to
Stone’s), Dupont, Kendall, and Rachford [5] showed that the number of
iterations of (1.5) required to reduce the A-norm of the error by a factor
of ¢ is O(h-llo;%) and the associated number of arithmetic operations is
O(hfslol%). Moreover, the iteration can be accelerated by Chebyshev or
conjugate gradient methods, decreasing the the number of iterations

1,2105%) and the associated number of arithmetic operations

reqnired to O(h
to O(hf 5103;). In this paper, we investigate whether these work estimates
can be improved by using either the Alternmating-Direction form (1.6) of the
DER factorization (AD-DKR) or the Symmetric Alternating-Direction form

(1.7) of the DER factorization (SAD-DKR).

2 l can be viewed as a one parameter family of preconditionings for

A. FrOm this point of view, it follows that, when (1.5) is accelerated by
the Chebyshev or conjugate gradient techmique, the parameter e internal to
l. should be held fixed, while the external parameter o in (1.5) is varied.

P " mannmieCie .

e ¥ I
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In Section 2, wo review the DKR factorization and present a
modification. In Section 3, we review some general results concerning the
rate of convergence of the stationmary iteration (1.5) and its Chebyshev or
conjugate gradient acceleration. Since these results are dependent upon
the spectrum of X-IA. we are led to an investigation of the eigenvalues of
l:lA and S:IA in the following two sections, More specifically, in
Section 4, using the additional restriction that 8y =3y, we develop
eigenvalue estimates for a pair of factors of the ifetation matrix I-ulzlA
associated with the modified AD-DKR factorization. In Section §, we
explain why we believe that, for a large class of problems, these estimates
suggest that the nuomber of iterations of (1.5) required to reduce the

A~norm of the error by a factor of & may be o(n~2/3

lo;l) with the
associated number of arithmetic operations being O(h-zilog%). and,
moreover, if (1.5) is accelerated by the Chebyshev or conjugate gradient
methods, then the number of iterations may be decreased to O(h-:/3

with the associated number of arithmetic operations being 0(5-25103%).

lo(%)

Although these work estimates are not rigorous, numerical results presented
in Section 6 strongly support our conjecture that the estimates are
accurate. In addition, the numerical results indicate that the estimates
are valid for the unmodified as well as the modified forms of the DIR

factorization,

2. The DER Fastorizatioa,
In this section, following the notation of [5], we review the DEKR

factorizsation and present a modification.
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Let ih be the set of points (jh,kh) ¢ @, where b is the stepsize
associated with the discretization and j, k are integers, and let ﬂh be the
sot of points (jh,kh) & Eh such that ((j+1)h,kh), ((j-1)h,kh), (jh,{(k+1)h),

(jh,(k~1)h) & Eh also. Then anh = 5h\0h. Let w denote the value of the

J.x
grid-function w at (jh,kh) & Eh.

For each point (jh,kh) e ﬂh. we approximate the right side of (1.2)

by the usual five-point self-adjoint difference operator

A5 ™ P St G (2.1)

+ + f

®3-1,x"j-1,x © *j,x1%j,k1°

For definiteness, we take

-2 1
c = -h “a, ((J+3)h,kh),

3k

-2 : 1
fj.k = ~h lz(Jh.(k+§)h).

by~ B2 lag ((J+3)h,k0) + o ((§-Drm,am)

1 1
+ az(jh.(k+§)h) + nz(jh.(k-i)h)] - q(jh,xh),
although our results hold for other similar sets of coefficients.

When the linear difference operator A is written in matrix form, the

terms in (2.1) that involve 'J x for (jh,kh) e anh are incorporated into

the right side of (1.1)., Therefore, we adopt the convention that 'j £ 0

if (jh,kh) § ﬂh. For consistency of notation, we also adopt the

slteranative convention used in [5] that

ey

e
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ok 0 if (jh,kh) ¢ ﬂh or ((j+1)h,kh) ¢ ﬂh. and

fj.k = 0 if (jh,kh) § nh or (jh,(k+1)h) ¢ ﬂh.
With the latter convention, it is useful to define

cj.k = - ‘1((j+—2)hnn)o
fj.k = ~h 12(jh.(k+i)h).

qj.k = q(jh,kh),
for (jh,kh) ¢ Q.

In [5], Dupont, Kendall, and Rachford introd;ced the DKR

factorization
LL = A+B,  with B, =B+, (2.2)
where
Lywix ™ ';T;Vj,k * tjii.k'j-l,k * ';Ti—l'j.k-l’ (2.3)
Byw = h;f;'j-l.k+1 * h;ii.k-l'}+1.k-1 (2.4)
- (hifi + ngii.k_l)wj'k.
(D, W (n, (2.5)

1 5.5k " %5,x°5.5"5.x

with coefficients given by
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gfi [bj.k‘l*“gll’ ;Ti - h:i;.x-1
- (g p? - G pht2,
';fi fj.x"ﬁfi'
SR
LD (DD LIRS

L,k - 5,85,k %Lty YLk

(2.6)

(2.7)

(2.8)

(2.9

Since ¢ and f are zero for (jh,kh) e anh. the coefficients of the

j'k jok
factorization can be computed recursively for j and k increasi

-odify3 this formulation by taking

(1) ~ (1) 2
j+1,k - %5,k j.k/( j.k ?

h
and initislizing

eY (1) ~ 1/2
vir "~ eyt T )

3
adjacent to Oﬂh. where °j.k or fj.k may be zero bdut ¢

Note that the recurremce (2.10) differs from (2.9) only at
J.x

and £

ng. Ve

(2.10)

(2.11) :

the points
j.k are not.




if (jh,kh) & 30, and either ((j+1)h,kh) e 8, or (jh,(k+1)h) e nh.‘ Dupont,

h
Kendall, and Rachford [5] showed that, for the unmodified factorization,

the quantity under the square root on the right side of (2.6) is positive,
whence LIL; is symmetric and positive—definite., Lemma 4.1 proves that the

modified DKR factorization possesses these properties also. However, for

1)
7j.k

rather that simply negative—semidefinite, as is the case for the unmodified

{ », the modification has the effect of making ﬁl negative-definite

fuctorization.s This difference is critical to the eigenvalue estimates

developed in Section 4.

If the grid-points are renumbered with j decreasing and k increasing,

then an alternative form of the DKR factorization is given by

t . _=
LL, = A*B, with B, =B D, (2.12)

where

(2) (2) . (2

Tow s = V5 x%k ¥ Y1, 0%e0k ¥ 85 k1", k1" (2.13)

4 The coefficients ¢ x and T used in (2.11) do not occur in the
matrix A. Moreover, fol’sone doli}ns @ and their discretizations, the
computation of these coefficients may require the evaluation of al~lnd a,,
respectively, outside of 0, If this presents a problem, c and f, . may
be replaced by nearby nonzero values, In most instances, {h§s alte}ifion

does not affect the factorization significantly.

5 A vector w with all components equal is a null-vector for the matrix §1
associated with the ummodified DKR factorizationm.
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[ SR,

= (2) (2)
(Bz')j.k = hj,k'j+1.k+1 + hj—l,k-l'j-l,k—l (2.14)

(2) (2)
LI T PPl
2" 5,k T %5,805,1"5,x (2.1%)
with coefficients for the unmodified factorization given by
(2)

(2) 32 (2)

Vik = by (v, ) - b Rk (2.16)
(2) 2 _ ,.(2) 1/2
SRR e %)
(2) (2)
Bi,x = 5./ V5,x (2.17)
(2) (2)
tik " 1.1 V5 x (2.18)
(2) (2) (2) _ (2).2
Bilt,e = b8,k = %5-1,afy e V) (2.19)
For the modified factorization, we replace (2.19) by
(2) ~ = (2),2
L PR AL AL 12.20)
and initialize
(2) (2) 1/2
Yi.x ['7j.k(‘j 1,2t j,k)] (2.21)

if (jh,kh) e aah and either ((j~1)h,kh) e Oh or (jh,(k+1)h) ¢ Dh. For

either the modified or unmodified factorizations, the coefficients can be
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computed recursively with j decreasing and k increasing.

Again, Lﬁl; is symmetric and positive-definite for both the modified

and unmodified factorizations. Furthermore, for 1221 { », the modification
has the effect of making B negative-definite rather that simply negative-

2

semidefinite, as is the case for the unmodified factorization.

We end this section with a remark about the directional dependence of
the factorizations (2.2) and (2.12). Not only are the coefficients
computed in a different order, but, also, §1 resembles a second-order
difference operator with differences taken along lines x+y=c, while 32

resembles a similar operator with differences taken along limes x-y=c.

3. Error Estimates,
In this section, we review some general results concerning the rate
of convergence of the stationary iteration (1.5) and its Chebyshev or

conjugate gradient acceleration,

To begin, we introduce some additional notation. If x = (xl.....xn)
and y = (yl....,yn) are two n-vectors, let the inmer-product of x and y be

(x,y) = x1y1+...+xnyn, where Y5 is the complex conjugate of Y- Let the

/2

norm of x be Mzl = (x,x)1 and, for any n by n matrix C, let the norm of C

be ICll = max{ licxll : Uzl =1 }. For any symmetric positive—definite matrix

/2 and the P-norm of C be

P, let the P-norm of x be nan = (Px.x)1
lC“P = max{ "CxﬂP : Ix“P =1 }. Also, for any matrix C, let the spectral

radius of C be p(C) = max({ IAl : A and eigenvalue of C }.

Etanew—
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If w is the solution of (1.1), v is the nul iterate generated by the

stationary iteration (1.5), and °n = 'n ~ w is the error in the nt'h

iterate, then

1 _ rr_.1,n
e, = [I-wA A]en_1 = [I-wA "Al e, (3.1)

where LN is the error in the initial guess vo° Since A is symmetric and

positive—definite, it is valid to moltiply (3.1) by All2 to get

A1/2 - [ caal 251, 1/2“‘1/2%_1 - [I_“l/zrxAuz]nAuzeo’
whence
1/2~1.1/2.n
IlenllAg MiI-wA™"“A A %) II-IIeollA. (3.2)

The last inequality is the basis for the following lemma.

1,2 1 1/2) < 1, then the number of

Lomma 3.1: If p = p(I-wA
iterations of (1.5) required to reduce the A—norm of the initial error by a

factor of & is at most n+l, where
1 n 1
(n—-q) log 5 log (q) log T ' log c, (3.3)

¢ is a positive con:tant.‘ and q+1 is the size of the largest Jordanm block

cg,ztartlyzis dependent upon the similarity transformation that
roduces A to Jordan normal form (see Theorem 3.1 of [14]).
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of A1/2K_1A1/2 with an eigenvalue of magnitude p. If Allzx.lAllz is
aormal, then
1 1
n= log 3 / log > (3.4)

Proof: By Theorem 3.1 of [14],
Riz-aa?/ 237143 /293y ¢ c(:)p""‘.

for constants ¢, q and p specified above. This inequality, together with

(3.2), proves the validity of (3.3). If Allzz-lAllz is normal, then

I;uAllzx-lAllz can be diagonalized by a Hermitian similarity

transformation, whence
.u_“lle-—IAllzln' - pn

and the well-known result (3.4) follows. Q.E.D.

If (1.5) is accelerated by the Chebyshev techmique, them the error at

the nth

step satisfies
e =P (Ala)e (3.5)
n n 0’ *

where Pn(z) is the translated and normalized Chebyshev polynomial of degree

n. (See, for example, [1].) Multiplying (3.5) by Allz and taking norms, we
got that
1/25-1,1/2. 0.
o l, <HP (A7R2AT ) NeNe . (3.6)
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The last inequality is the basis of the following lemma.
Lemma 3.2: If the eigenvalues of A;lzx—lAllz lie in the ellipse

E=(z8C:z2z=1-acos @+ ibdbsiné6, 06 2x), (3.7)

where 0 ( b ( a {1, then the number of iterations of the Chebyshev
acceleration of (1.5) required to reduce the A-norm of the initial error by

a factor of ¢ is at most n+l, where
1 1
n log T 9 logn = log o log ¢, (3.8)

¢ is a positive constnnt.7 qtl is the size of the largest Jordanm block of

K-IA with an eigeavalue on the ellipse E, and
2 2
r=(a+b)/(1+J1-4a" +0b7). (3.9)
If A is symmetric, then
2 1
n = log 3 / log ot (3.10)

and, moreover, D = 0 in the expression for r.

Proof: By inequality (2.22) of (8], Section 6.2 of [1], and an

7 The consta!’zg_isl,!pondont spon both the similarity transformstion
that reduces A"""A A to Jordan normal form (see Theorem 3.1 of [14])
and the bound (2.22) of [8] on the Chebyshev polynomials.
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argument similar to the one leading to Theorem 3.1 of [14],

IIZK-IA1/2

e (A )R € cn9® (3.11)

for the constants ¢, q, and r specified above. This inequality, together

with (3.6), proves the validity of (3.8). If A is symmetric, then
1/2>1,1/2

A7""A TA has real eigenvalues and, moreover, it can be diagonalized by

an orthogonal similarity transformation. Hence, it follows from a

simplification of the argument used to prove (3.11) that
an(All L1 ¢ 2,

where b = 0 in the expression for r. This together with inequality (3.6)

proves the validity of (3.10). Q.E.D.

\
Although variants of the conjugate gradient algorithm have been
developed for nonsymmetric problems, the analysis of these methods is not
well~developed. Consequently, we limit our discussion of the conjugate
gradient acceleration of (1.5) to the case that i is symmetric and
positive-definite. Im this case, it is well-known that the approximate
solution v generated by the conjugate gradient acceleration of (1.5)
minimizes the A-norm of the associated error, e, over all possible errors

of the form

1/2;—1A1/2

.= pn(A )eo,

where p‘(z) is a polynomial of degree n satisfying pn(O) =1, (See, for

example, {1].) Since the translated and normalized Chebyshev polynomial,

e
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Pn(z). satisfies these conditions, the following lemms is an immediate
consequence of Lemms 3.2,

L‘IIAI3.3S If A is symmetric and the eigenvalues of Allzx—lAllz lie
in the interval [1-a,1+a]l, 0 ( a ¢ 1, then the number of iterations of the

conjugate gradient acceleratiom of (1.5) required to reduce the A-norm of

the initial error by a factor of &2 is at most n+l, where
2= log = / log 3 (3.12)
e T *
and

r=a/(1l +/1 - lz).

To use the results developed in this section to bound the number of
iterations of (1.5) or its acceleration, we require estimates of the

spectrum of K_IA. We turn to this question next.

4. Bigesvalue Estimates.
For the AD-DEKR factorization, the iteration matrix associated with

(1.5) is
I-uh 1A = [A+B 171 [(1-w)A+B, 1 [A+B,1 " [(1-w)A+B,)
(") 1 1 2 27’
which is similar to

[(1-w)A+B,1[A+B,1 7 [(1-w)A+B, ) [A+B,1 7",
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In this section, we develop some eigenvslue estimates for the pair of
factors [(1—0)A+31][A+Bbl—1 and [(1-0)A+32][A+81]-1. These ostimatos

provide some guidance (which has proven to be very effective in practice)

(1)
Jk

factorizations. Moreover, these estimates are the basis for the

for choosing the parameters {a } and @ required by the AD-DKR and SAD-DKR
conjectures developed in the next sectiom concerning the work required to

solve (1.1) to a specified tolerance.

A number of preliminary lemmas are required before we can state and

prove the main result of this section.

Lesma 4.1: For either form of the modified DER factorization (2.2)

(1) (1)

or (2.12), if a X 2 0 and Bi < Tk £ =, i=1,2, where

J
1 (1) (1) (i) (i),,2 , (1),1/2
B; = min { 5[(1+uj.k)(1*pj‘k) + [{(1+uj,k)(1+pj.k)} -‘pj.k] 11}
Py t
(1 _ %151
Pj.i T - o7 ’
5.k 3,k .
2 _ Sk |
Jok ~ 3 ’
then
(1,2, o =~ .
('j.k) 2 ’1(°j.k + fj.k)‘ (4.1)
(2),2 ~ -~
V20?2 -8,G L E D, (4.2)
S, °f
0 ¢a'l) L Lk ik (4.3)
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~ ~

c of
0 shgf;.ks- - Lk (4.4)
¢-1.5" 55,k
at sll points (jh,kh) e Eh at which vgf; and hgf; are required. Moreover,
if the user selected parameoters (a;iil and {vgii} are uniformly bounded

above independently of the stepsize, h, then

(1) (4.5)

—2 , :
0 <N H By, ,

where H, although problem dependent, is independent of the stepsize, h.s

Proof: We prove this lemma for the factorization (2.2) only, as the

proof for (2.12) is similar.

(1) 1)
ik j+1.x

factorization satisfy (4.1) and (4.3) and the basic recurrence relations

Since the initial values of v and h for the modified DKR

used to calculate the coefficients for both the original and modified DXR

factorizations are essentially the same, the induction argument used in

Lesma 1 of [5] also proves (4.1) and (4.3).

(1)

To prove (4.5), note that, if vj K

is computed by the recurrence

s Inequslity (4.5) does not hold near anh for the unmodified DXR
factorization,
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(2.6), then
(1),2 (1) - - (1) (1) ~ ~
('j,k) (4 (1+°j,k’bj,k (1+°j,k)(1+pj,k+”j.k)‘°j.k+fj,k)‘ (4.6) i
where 3
L ;
] =~ ~ ’
3.k c, +f
j.k "j,k
whence, by (2.10), (2.11), and (4.6),

e _-f -2
(1) -1 Sk ik = ~ = hn ‘
h 2 = = 2 min(c SE. ) 2 .
PLE T Sas oF 25,2 R R Wix

1) (1)
j.k+"j.k) or 7j.k depending upon whether

(1) is compwia¢ fivm (2.6) or (2.11), respectively. The proof is

vj.k
completed by observing that the assumptions on °§‘i' ysii. 8. s, and q

, 1
where tj.k is esther ulﬁc(.;)(1+p

ensure that tj x is bounded above independently of the stepsize, h. Q.E.D.
’

Lesms 4.2: For either form of the modified DKR factorization (2.2)

or (2.12), if agfi 2 0, then Bi 2 1. Moreover, if agf; = coh’ for

constants o > 0and 0 {p 2, then Bi 2 1+clh’/2 for some constant

° > 0,

Proof: The bound 51 2> 1 follows directly from the definition of Bl in

(1)
Lemma 4.1, If, in additionm, °j.k = cohp and 8, 8, 2 n > 0 sre Lipschitz

continuous in @, then ”1 2 1'01:11:",2 by an argument similar to the onme used

to prove (4.15) in [5]. The corresponding inequalities for Bz are proved
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in a similar way. Q.E.D.

Lemms 4.3: For A, B, and B, defined by (2.1), (2.4), and (2.14),

1 2
respectively,
2 2
(Ax,x) 2 tcj.k 41,k j,kl + J,klxj.k+1_xj.kl (4.7)
2
+ qj'klxj'kl ’v

= I G ¢) 2

(le.x) } hj+1.k'x1+1.k J,k+1l , (4.8)

-~ - _ (2) 2

Byrom = - )n L 12 (4.9)
where we have used the convention that xj = 0 for xj x ¢ Dh and the sums

are takenm over all nonzero terms.

Proof: The validity of equations (4.7)-(4.9) can be demonstrated

easily by summation by parts, as is the validity of the similar set of

equations (4.7)-(4.8) in [5]. Q.E.D.

Lemma 4.4: For either form of the modified DER factorization (2.2)

or (2.12), if agii 2 0 and Bi £ ygii § =, then

0 < ~(B.x,x) € L (Ax,x), (4.10)
i Bi
(1) (1)
1f, in addition, the user-selected parameters [uj k} and {yj k} are

uniformly bounded above independently of the stepsize, h, then

cz(x,x) (4 —(iix.x) (4.11)

Sl e it e




for some constant , > 0.9

Proof: We prove this lemma for the factorization (2.2) only, as the

proof for (2.12) is similar,

To prove (4.10), we use an argument similar to the one used to prove
(4.11) in [5]. First, observe that 0 ¢ -(ﬁlx.x) follows directly from

(1) > 0 by Leoma 4.1, To verify the upper

(4.8) of Lemma 4.3, since hj+1,k 2

bound on -(ﬁlx.x). note that, by Lemma 3 of [5],

e £y .12 _.12 .12
c+f|' bl ¢ cla-el® + flb-el®,

for any positive ¢, f and any complex a, b, e. This inequality, together

with Lemmas 4.1 and 4.3, shows that

(1)

2
j+1 .khj+1 JE 1j,k+1 |

-(ﬁlx.x) = 2 h

C, .oF

.k _i.k I -

: +? j*1,k i, k"1
j.k 7§,k

s-ﬁ:} |2

1 ~ _ 2 ~ _ 2
- 31 } [cj.klxj+1.k ‘j,kl + fj.klxj.k+1 xj,kl }

1
S, Bl (Axn!) .

’ For the unmodified DER factorization, inequality (4.11) does not hold,
whence ii is negative-soemidefinite rather than negative—definite.
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To prove (4.11), observe that, by Lemmas 4.1 and 4.3, ]

(1)

|2
jHl.k

—(le.x) = 2 h l‘j+1.k—xj.k+1

-2 2
RN RN

> h-zn 2 } |y£€+1)-yi{) '2'

all L L

where each L is a diagonal in ﬂh satisfying x+y=c, for some constant c, and

{y{f)) is the subset of {(x

ik
with components {yit)) on the diagonal L, and let CL be the n by n matrix

2

} on L. For each L, let 2 be the n-vector

h “disg(-1,2,-1). Then

- t
52 3 Y02 L e 2 A ).

where AL is the minimum eigenvalue of CL. Since the length of any diagonal
L in nh is bounded, there exists a constant A, > 0, independent of both h
and L, such that kL 2 A, > 0. Consequently, (4.11) holds for e, = Hr, > O,

Q.E.D.

Lomms 4,.5: If

(1) _ P
1, “j.k coh for constants o > 0and 0 <p <2, and

2. 31 = '2’

then

0¢- (B0 - (Han (1-c3np’2)(Ax.x).




-22 -

for some constant cs > 0.

Proof: By Lemmas 4.1 and 4.3,

0<- (ﬁlx.x) - (ﬁzx.x)

T .-F G, of
(-L Sl iEy, 12, SLK ik ), T
Bo £ 3. 4% FEC U5 St 18 251 S, +f EACTD SN 1 ‘
j.k "j.,k j»k "j+1,k 1

vhere B, = lin{Bl.ﬁz}. For some constant L,

., ,-F ¢,  oF
__:i...k_;i'_*l..k_(___i...k__l...k (1+Ln) ,

~ -~

5.k 501,k °5.x 5.

since s, 2 M > 0 is Lipschitz continmous in 8. Also, for any complex

values 8, b, ¢, d,
la-v1% + le-a1? ¢ la-c1? + la-al? + [b-cI? + [b-ai?.
Therefore,
0¢- (ilx,x) - (izx.x) -

[ .

T
< Lp‘ 2.. ~ ("jﬂ,k xj,k+1' + lxj+1.k+1 x.i-k|)
. [ +f
j.k "j.k ﬁ
.
_ada < Skt Y - 12 |

$7%. 25 4 R TR TRy

j;k j'k

2 2
+ Ixj+1.k+1-xj.k+1| + l‘j+1,k+1_xj+1.k' ).
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Since 8, =9, 2n > 0 are Lipschitz continuous in @,
c.  -f
_ _i.k i,k , _ 1+Lh
= 3 T minfe; o 1085 perr g 1)
j.k i,k
for L sufficiently large, whence
0¢ - (le.x) - (Bzx.x)
§1+!=hl } 2 ~ _ 2
28, {cJ.k IO P R L PVLL FIPIrweL U
~ 2 = 2
ST IR AL LR TR eI e
2 ~ 2
< - 2 {t:j'k 1 J,k' + fj,klxj,k+1_xj.k' }
¢ et Hax,m,
where the last inequality follows from Lemmas 4.2 and 4.4. Q.E.D,

Corollary 4.6: If

(i) = ¢ hp for constants ¢

j x 0 0 > 0and 0 ¢ p ¢ 2,

2. a, = 32. and

1

3. 0< w1,

then the AD-DER iteration matrix Hw is well-defined.
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Proof: From Lemma 4.5, if 0 < w { 1, then [(2—«)A+§1+§2] is positive—

definite, whence 3o is [(Z—U)A*Bl+32]. Therefore, [(2-«)A+B1+B2] is

nonsingular and lu is well-defined by (1.6). Q.E.D,

Theorem 4.7: Assume that

(1) = ¢ .bP for constants c, > 0 and 0 < p £2

1.a; =% 0 il

2. Bi £ 1211 £ v, for some constant Te { @ independent of the stepsize,

h, and

3. .1 =a,.

Then any eigenvalue A of either [(1—«»)A+81][A-0'le-1 or [(1—«)A+82][A+Bll-1

is real and satisfies

-1+ c4hp/2 - (u—l)csh-p A< - csnz'P. (4.12)

if @« ) 1, and

1+ 00?2 (A (1-cn2

P P
4 5 + (l—ﬂ)csh » (4.13)

if @ { 1, where C4r Og» Cg aTO® positive constants.

Proof: We prove this result for [(1—3)A+31][A+82]-1 only, as the

proof for [(1-0)A+82][A+81]-1 is similar.

Since A, Bl' and B2 are symmetric and LZL; = A+Bh is positive-

definite, [(1-0)A+81][A+le-1 is similar to the symmetric matrix

1_1/2[(1-0)A+31][A+le-1/2. Consequently, the eigenvalues of

-1/2

[A*n,

y. Y% O,

, [(I-U)A+81][A+§2]—1 are real, Moreover, for x = [A+le
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(ta+n 17V

2 -1/2
) [(1-0)A+31][A+B ]

2
(y.y) ([A+lex.x)

y.y) ([(1-0)A+Bllx,x)

’

whence any eigenvalue A of [(1—0)A+81][A+82]‘1 satisfies

min ([(I-U)Afgllx.x)
x+0

Cr max ([(1~0)A+Bllx.x)

=+ x#0 :

([A+lex.x) ((A+lex.x)

In addition, since B, = B +D1, B, =B +D2, and, by Assuamption 1,

1 1 2 2

Dl = Dz =D,

([(1-w)A+B_]x,x) (1-w) (Ax,x) +(B, x, 1) +(Dx, x)
1 - —1 . (4.14)
([A+lex.x) (Ax.x)+(Bzx.x)+(Dx.x)

Thus, to verify that inequalities (4.12) and (4.13) hold, it is sufficient
to develop upper and lower biinds for the right side of (4.14), where,

throughout this proof, we assume x # 0.

Since LZL; = A+B2 is positive-definite, (Ax.x)+(§2x.x)+(Dx.x) > 0.,
Therefore, if (l—m)(Ax.x)+(§lx.x)+(l)x.x) < 0, then

(1-0)(Ax.x)+(§11.x)+(bx.x) 2-
£0¢1 - chP

(Ax.x)+(§2x.x)+(bx.x)

for cg sufficiently small, as h is bounded above in any discretization of

8. On the other hand, if (1-0)(Ax.x)+(§1x.x)+(bx.x) 2 0, then

(1-w) (Ax,x) +(B_ x,x) +(Dx, x) (B.x,x)
1 (Ax.x)
$1+ (Dx,x) + (1~) {Dx,x)’

(4.15)

(Ax.x)'*(izx.x)-*(bx,x)
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since, by Lommas 4.2 and 4.4, (Ax.x)+(§21.x) > 0. By Assumptions 1-2 and
the assumptions on 8, 8, and q, there exist positive constants m and N

such that
nh_zﬂ’(x.x) < (Dx,x) € l(h—2+p(x.x). (4.16)

whence, by Lemma 4.4,

(B!x.x)

—c K2°P
(Dx,x) £ c5h

for Cg £ czll. Furthermore, from Lemma 4.3 and the definition of D,

(Ax,x) -p
(Dx,x) $ c6ll

for s 2 2/00. Hence, if w 2 1, then

(1—-)(Ax.x)+(§1x.x)+(nx.x)

— <1- cshz—p.
(Ax.x)+(Bzx,x)+(Dx.x)
and, if @ ( 1, then
(1-w) (Ax, x) +(B_ x, x) +(Dx, x) _ _
1 $1-0t® P+ (1-wlegh P,

(Ax.x)+(§zx,x)+(Dx. x)

showing that the upper bounds for inequalities (4.12) and (4.13) are valid.

To verify the lower bounds, consider two cases depending upon whether

(DPx,x) > (Ax,x). If (Dx,x) > (Ax,x), then
(Bix.x) + (Dx,x) > O, i=1,2,

by Lemmas 4.2 and 4.4, whence

(1-)(Ax.x)'*(slx.x)-r(bx.x) N (1) (A l

(Ax.x)'*(izx.x)-f(bx.x) (A:.x)+(§zx,x)+(nx.x).

e e e
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Therefore, if w { 1, then

(1—0)(Ax.x)+(§1f.x)+(Dx,x)

. 2 0,
(Ax.x)+(82x.x)+(bx.x)

and, if @ 2 1, then

uﬂﬂhdhﬁfJHWLﬂ

o 2 ~(u-1).
(Ax.x)+(Bzx.x)+(Dx.x)

Thus, the lower bounds in the theorem are satisfied in this case provided
that g is sufficiently large, since h is bounded above in any

discretization of Q1.

On the other hand, if (Dx,x) ¢ (Ax,x), then

{Ax.x) >
(Ax.x)+(§2x.x)+(Dx.x)

N

. (4.17)
Furthermore, by Lomma 4.5,
(ilx.x) 2 -(l-cshplz)(Ax.x) - (sz.x).

whence

(1-o)(Ax.x)+(§1;.x)+(nx,x)

(Ax.x)+(§zx,x)+(bx.x)

~(Ax.x)-(B, x, x) #(Dx, x) +(1-w+c_.uP’ 2) (Ax, x)

3 p 3
(Ax.x)+(§21,x)+(nx.x)

llp/Z) (Ax.x)

2 -1 + (1-utc o .
(Ax.x)+(B!x.x)+(Dx.x)

3

Consequently, by (4.17), if w { 1, then

(1-.)(Ax.x)+(§1x.x)+(0x.x)

- 2 -1+ P/
(Ax.x)+(82x.x)+(bx.x)
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for 4 £ c3/2. and, if @ 2 1, then

(1-0)(Ax,x)+(§1;.x)+(Dx.x)

2-1+¢

— 2P - e P,
(Ax.x)+(Bzx.x)+(Dx,x)

showing that the lower bounds for inequalities (4.12) and (4.13) are valid.

; Q.E.D.

———

If our objective is to minimize p([(l-u)A+81][A+Bz]—1) and

p([(l-u)A+lelA+Bll-1) in the hope that this will minimize p(I-ulzlA) and ’

i ke

lead to an effective stationary iteration, them, based upon equations
(4.12) and (4.13), we should take w =1 and p = g. For future reference,

we rostate Theorem 4.7 for these particular values of v and p.

Theorem 4,.8: Assume that

1.e=1,

(1) _ _ ,4/3 . ]
2. aj.k coh for some positive constant o’

3. Bi L4 7;fi £ 7o for some constant y, { © independent of the stepsize, 5

h, and

) 4. ll =,

Then any eigenvalue A of either Bl[A+BZJ-1 or 32[A+Bll-1 satisfies

-1+ c4h2/3 (¢ 1 - o023,

5

{
i
!
{
!
}

whence

-1 2/3
9(81[A+32] ) 1~ c7h
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2/3

~1
9(32[A+Bll ) 1 -0c,h""",

7

where ¢, = min{c } >o0.

7 4°°s
5. VWork Estimates: Comnjoctures aad Discussion.

In this section, using the eigenvalne estimates from the previous
section, we develop conjectures that both p(I—I;IA) and p(I-S;IA) are
bounded by 1-ch2/3, for some positive constant c¢. If the conjecture for the
SAD-DKR factorization is valid, then the number of iterations of (1.5)
required to reduce the A-norm of the imitial error by a factor of ¢ is

O(h_2/3

lo;%) with the associated number of arithmetic operations being
o(h72§1o.%). Moreover, if (1.5) is accelerated by the Chebyshev or
conjugate gradient techniques, then the number of iterations is decreased

to o(n~1/3

log%) with the associated number of arithmetic operations being
0(5-2%10;%). If additional conjectures concerming the spectral structure
of I;IA hold, then, for the AD-DKR factorization, similar work estimates
are valid for the stationary iteration (1.5) and its Chebyshev
acceleration, Although the work estimates in this sectiom are not

rigorous, numerical results presented in the next section strongly support

our conjecture that they are accurate.

Ve begin by stating the two fundamental conjectures about p(I-l;IA)

and p(I-s;1A) upon which the work estimates in this section are based.

Conjesture 5.1: If the assumptions of Theorem 4.8 hold, then

p(I-l;IA) (4 1-c1h?/3. Moreover, the eigenvalues of I;IA lie in a very

eocentric ellipse, the major—axis of which is contained in the interval
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le 2/3 2/3

.’h 02-°7h ] .

Discussion: If C1 and C2 are normal matrices, thea

p(c,Cy) < Rec il < lc,l-lic, il = p(C)p(C,) .
Hence, if 31[A+32]-1 and 32[A+BI]_1 were normal, then

-1 -1 -1
p(l—l1 A) = p([A+Bll 31[A+B2] Bz)
-1 -1
= 9(31[A+le 32[A+31] )

-1 -1
< p(B,[A+B,] ") p(B,[A+B,] ),

and the first statement of the conjecture would follow from Theorem 4.8.
Moreover, if ll were symmetric, then the eigenvalues of M;IA would be real

and would lie in the interval [c7h2/3.2—c7h2/3].

The conjecture is based upon the observation that, under the
assumptions of Theorem 4.8, each of 81[A+52]-1, B2[A+Bll-1, and ll is
‘almost symmetric’ in the imterior of the grid nh. by which we mean, for

example, that

-1 -1
(31[A+nz] ')j.k ~ ([A+le Bl')j,k (5.1)

whenever the grid-point (jh,kh) is not ‘too close' to anh. This follows
from a simple calculation that shows that the matrices Blnz. ABI' ABZ’ DBl’
and Blz 'almost commute’ in the interior of the grid Oh. However, if
(jh,kh) is ‘close’ to anh. then (5.1) is a very poor approximatioa.

Although it is possible to be more specific about what we mean by 'almost
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symmetric’, this has not lead us to a more convincing justification of the
conjecture., Therefore, we do not pursue this argument further at this

time.

Conjecture 5.2: If the assumptions of Theorem 4.8 hold, then

p(I—S;IA) < 1--c.,hz/3 and the eigenvaiues of S;IA lie in the interval

2/3 . .2/3
[°7h 02 °7h ]-

Discussion: If C1 and C2 are normal matrices, then

p(C,+C,) & IIc1+czll < llclll + Hc2H = p(C)) + p(C,).

In addition, if Conjecture 5.1 holds, then p(I-N;IA) < 1-c1h213; the
conjecture that p(I—l;tA) £ 1-c.,l:2/3 can be defended in a similar manner,
Hence, if I-IIIA and I—I;tA were normal, then
-1 1 -1 1 -t 2/3
p(I 81 A) £ ip(l l1 A) + ip(I—II1 A) ¢ 1—c7h . (5.2)

Furthermore, since S1 is symmetric, the eigenvalues of S;IA are real,
Hence, if (5.2) holds, then the eigenvalues of SIIA lie in the interval
(e 2/3 1|.2/3]_

1h ,2-07

Although I-I;IA and I—l;tA are not in general normal, they are
‘almost symmetric’ in the interior of the grid nh in the sense used in the

discussion following Conjécture 5.1.

Theezrem $,3: If tho assumptions of Theorem 4.8 hold and

Conjecture S.2 is valid, then, for the SAD-DKR factorization, the number of
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iterations of (1.5) required to reduce the A-norm of the initial error by a

/3

factor of g is O(h"2 log%) and the sssociated number of arithmetic

operations is O(hfzilo;%). Moreover, if the iteration (1.5) is accelerated

by the Chebyshev or conjugate gradient techniques, then the number of

iterations is decressed to O(n 1’3
' 1

arithmetic operations is O(h-zslog%).

log%) and the associated number of

Proof: If the assumptions of Theorem 4.8 hold and Conjecture 5.2 is

valid, then p = p(I—S;IA) < 1—c7h2/3. Noreover, AI/ZS;IA;IZ is normal,
since S.'1 is symmetric. Hence, by Lemma 3.1, the number of iterations of

1

(1.5) required to reduce the A-norm of the initial error by a factor of ¢

is at most n+l, where

n = log % / log % = O(h-2/3

1
lose).
Moreover, 81 is symmetric and the eigenvalues of S;IA lie in the interval

/3.2_°7h2/3

Chebyshev or conjugate gradient technique, then, by Lemmas 3.2 and 3.3, the

[c7h2 1. Hence, if the iteration (1.5) is accelerated by the

number of iterations of (1.5) required to reduce the A—norm of the initial

error by a factor of ¢ is at most n+l, where

/3

n= log % ! log % = O(h_l 10;%).

since, in this case, a = 1—::.,112/3 a

2
Jisfind s

nd

L R ]

for some positive coamstant o.
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Since, for the SAD-DKR factorization, the number of multiplies needed
to perform one iteration of (1.5) or its Chebyshev or conjugate gradient
acceleration is proportional to the number of grid-points in the
discretization, the number of multiplies per iteration is O(hfz). Hence,
the work estimates follow immediately from the bounds on the number of

iterations, Q.E.D.

For the AD-DXR factorization, the work estimates are complicated
slightly by the appearance of the constants ¢ and q in equations (3.3) and
(3.8) and the constant b in the expression for r (3.9). Clearly, these
constants depend upon the matrices '1 and A and, consequently, may grow as

h->0. However, if they do mot zrow ’too fast’ as b->0, a result similar to

Theorem 5.3 holds for the AD-DIR factorization as well,

Theozem 5.4: If

1, the assumptions of Theorem 4.8 hold,
2, Conjecture 5.1 is valid, and

3. the constants ¢ and g that appear in the inequality (3.3) satisfy
c= O(c-k) and q { Q, for some constants k and Q independent of h,
then, for the AD-DER factorization, the number of iteratioms of (1.5)
roquired to reduce the A-norm of the initial error by a factor of ¢ is

ll--2/3

o( lo'%) and the associated number of arithmetic operations is

2 .
0(h 23103%). Moreover, if the iteration (1.5) is accelerated by the

Chebyshev techaique and Assumption 3 is replaced by

e
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w
.

the comstants ¢ and q that appear in the inequality (3.8)
satisfy ¢ = O(c_k) and q { Q, for some constants k and Q

independent of h, and

4. the constant b that appears in the expression for r (3.9)

satisfies b = O(hlls).

-1/3

then the number of iterations is decreased to O(h log%) with the

1
associated number of arithmetic operations being O(hfzilog%).

Proof: If the assumptions of Theorem 4.8 hold and Conjecture 5.1 is

valid, then

2/3

p = p(I-ll;lA) < 1-c B (5.3)

for some positive comstant c By Lemma 3.1, the number of iterations of

7.
(1.5) required to reduce the A-norm of the initial error by a factor of ¢

is at most n+l, where
1 n 1
(n—-q) log > log (q) log s * log ¢

Therefore, by Assumption 3, and (5.3), n { m, where

/

(l-Q)07hz 3. Q logma = (k+1) log g.

2/3

for some constants Q, k, and C independent of h, whence n = O(h lo;%).

By Assumptions 1, 2, and 4, the eigenvalues of I;IA 1je in the

ellipse

B={z2zeC:2=1~-2c080+ibsin® 00 2n1]},
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where a = 1-c.’h2/3

1. Lefizn? s

a+bd

/

snd b = O(h1 3). whence

for some positive constant c¢. Therefore, by Assumption 3, Lemma 3.2, and an
argument similar to the onme used above for the stationary iteratiom, if the
iteration (1.5) is accelerated by the Chebyshev technique then the number
of iterations required to ieduce the initial error by a factor of ¢ is

decreased to O(h.llslog%).

Since, for the AD-DKR factorization, the number of multiplies needed
to perform one iteration of (1.5) or its Chebyshev acceleration is
proportional to the number of grid-points in the discretization, the number
of multiplies per iteration is O(h-z). Hence, the work estimates follow

immediately from the bounds on the number of iterations. Q.E.D.

We have not been able to establish the validity of Assumptions 3, 3,
snd 4 for the AD-DEKR factorization, although we believe that the violation
of either Assumption 3 or 3 is very unlikely in practice. On the other
hand, the validity of Assumption 4 is questionable., For a few sample
problems with coarse discretizations, we computed the eigenvalues of I;IA
and found some of them to have small, but not insignificant, imaginary
parts. However, the numerical results presemted in the next section do not

contradict the conclusion of Theorem 5.4, which lends support to our belief

that the assumptions on which the theorem is based may be valid as well.

Finally, we re—emphasizo that the class of problems of the form (1.2)
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to which our convergence results for the AD-DKR and SAD-DEKR factorizations
portain is essentially the same as the class considered by Dupont, Kendall,
and Rachford [5] for the DKR factorization, except for the added

restriction that a =9, Experimental results show that, if this

rostriction is violated, then the Altermating-Direction technique may not
improve the rate of convergence of the iteration (1.£) or its acceleration.

4/3

Furthermore, note that the parameters w = 1 and a h

.k = co recommended

for use with the AD-DKR and SAD-DKR factorizations are substantially

2

difforent from the corresponding parameters w = O(h) and a ch

ik
recommended by Dupont, Kendall, and Rachford [5] for the DER factorization.
Moreover, experimental evidence suggests that the AD-DKR and SAD-DKR

; factorizations do not achieve the substantially improved rates of

convergence that we have observed if the parameters recommended for the DKR

factorization are used. A more complete discussion of these observations

is given in [3].

6. Nemorical Results.
In this section, we present some numerical results that support the

! conjectures of the previous section.

i
For this experiment, we chose the Dirichlet problem with homogeneous '
boundary conditions for the two-dimensional elliptic equation (1.2) with !

coefficients i :

e m—— et b < % s A8 v

l1(x.y) = tz(x.y) = ¥, q(x,y) = -1/(1+x+y)

on the L~shaped domain Q having vertices (0,0), (1,0), (1.;—). (%.%). (%.1). '
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(0,1). The domain was discretized with N+1 evenly spaced grid-lines in

each direction; h = 1 For N = 10, 20, 30,...,90, we discretized (1.2)

N.
using the standard five-point operator described in Section 2, We computed
r, the right side of the resulting system of linear equations (1.1), so

that the system has the solution
w, = x,(3x)0-1)y, G-y -y
j.k i'2 73 ik2 7k x’

where

Starting from an initial guess of zero, we solved (1.1) by the iterative
methods discussed in the previous section. Also included for comparison is
the conjugate gradient scceleration of (1.5) based upon the DKR
factorization. In each case, we recorded the number of iterations required

to reduce the A-norm of the initial error by a factor of e = 10—5.

In Figure 6-1, the number of iterations required to solve (1.1) to
the specified accuracy are listed for the methods

1. SIN, the stationmary iteration (1.5) based upon the nonsymmetric

AD-DER factorization M. with a, . = h¥/3

4 j.x and iteration parameter

w=1,

2. SIS, the stationary iteration (1.5) based upon the symmetric SAD-DKR

factorization S1 with aj = h‘l3 and iteration parameter w =1,
’

3. CHN, the Chebyshev acceleration of the stationary iteratiom (1.5)

based upon the nonsymmetric AD-DEKR factorizatiom Hl with aj " h‘ls

"
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and iteration parameters chosen to minimize Pn(z) on the interval

2/3 ,_,2/3

(h 1,

4. CHS, the Chebyshev acceleration of the statiomary iterationm (1.5)

based upon the symmetric SAD-DKR factorization 81 with aj - h4/3
and iteration parameters chosen to minimize Pn(z) on the interval
[h2l312-h2/3]9

5. CGS, the conjugate gradient acceleration of the stationary iteratiom
(1.5) based upon the symmetric SAD-DKR factorizationm 81 with

4/3

a = h , and

i,k

6. CGDKR, the conjugate gradient acceleration of the statiomary

iteration (1.5) based upon the DER factorization with aj,k = hz.
For each method, both the modified (M) and unmodified (UN) DEKR
factorizations were used. Also listed in the last two lines of Figure 6-1
are the expected rate of convergence, E, and the observed rate, R, where R

is computed by a least squares fit to
log N = R log (NUMBER OF ITERATIONS) + C
for N = 30,40,...,90,

For each of the methods, the numerical results for the modified and
unmodified DKR factorizations are slmost identical. Consequently, we have
plotted the nomber of iterations for the methods based upon the unmodified

DER facotorization oanly in Figuores 6-2 and 6-3. The CGDER method is

included in each graph for comparison,
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Figuze 6-2: The number of iterations required by the methods SIS (1),
Cas (2), CG8 (3), and CGDER (4) to :ednco_;ho A-norm of the
exror by s factor of s = 10 °,
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Figure 6-3: The number of iterations required by the methods SIN (1),
CEN (2), aad CGDER (3) to redsce the Aznora of the error by s factor of
s =10 °,
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The rate of convergence of the methods, with the possible exception
of CHN, agrees vory well with the rate predicted by the analysis in the
previous section. The reason for the discrepancy for CHN is not clear to
us, bot it could be that Assumption 4 of Theorem 5.4 is violated or that
the parameters that we chose for the Chebyshev iteration are not optimal.

This guestion requires further investigation.

Although the principal aim of this paper is to present asymptotic
work estimates for several ADIF methods and not to compare the efficiency
of various algorithms for solving (1.1), we conclude with a few
observations about the efficiency of CGS, Even on coarse grids, the number
of iterations required to solve this test problem by CGS is about half the
number required by CGDEKR. Moreover, this ratio decreases with N, as the
theory predicts. However, straightforward implementations of CGS and CGDER
require 16(N—1)2 and 44(N—1)2. respectively, multiply—-adds per iteratiom.
Hence, for these implementations, this problem, and the grids comsidered,
CGDEKR requires less work than CGS to solve the problem. But the relative
efficiency of these two methods is problem dependent: for the Laplaciam on
a unit square with the same sequence of grids and implementations, we found
that OGS requires slightly less work than CGDER on the fime grids. In
addition, Eisenstat {6] has shown that CGDER can be implemented in 10(N—1)2
multiply-adds per iteration, Some of his techmiques are applicable to CGS
as well, and it is our hope that the work per iteration for this method can
be sigaificantly reduced. Ve intend to consider the question of efficient

implementation of ADIF methods in (3], as well as the comparisom of these

methods with others.
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